Cocaine affinity decreased by mutations of aromatic residue phenylalanine 105 in the transmembrane domain 2 of dopamine transporter.

نویسندگان

  • Xiaohong Wu
  • Howard H Gu
چکیده

Dopamine transporter (DAT) is a major target of cocaine, one of the most abused drugs. Major efforts have been focused on defining residues in DAT involved in cocaine binding. We have isolated the Drosophila melanogaster DAT (dDAT) cDNA, which is 10-fold less sensitive to cocaine than the mammalian DATs. Replacing transmembrane domain 2 (TM2) of mouse DAT (mDAT) with dDAT sequence reduced cocaine sensitivity. The reciprocal construct exhibited increased cocaine sensitivity. Switching residue 105 in TM2, a phenylalanine conserved in all mammalian DATs, to methionine, the corresponding residue in dDAT, resulted in a functional transporter with cocaine sensitivity 4-fold lower. Replacing F105 with alanine, leucine, isoleucine, serine, threonine, asparagine, or glutamine resulted in transporters with low transport activity. In contrast, changing F105 to the other aromatic residues tyrosine or tryptophan retained more than 75% transport activity and high cocaine sensitivity. Most significantly, the reciprocal construct, switching the methionine in dDAT at the corresponding residue to phenylalanine, increased cocaine sensitivity 3-fold. Finally, the mDAT mutant with a cysteine at this position had normal transport activity but exhibited cocaine sensitivity that was 15-fold lower. These results suggest that F105 in mDAT contributes to high-affinity cocaine binding. The functional cocaine-insensitive mutants provide tools for the study of the mechanism of cocaine addiction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dopamine transporter: transmembrane phenylalanine mutations can selectively influence dopamine uptake and cocaine analog recognition.

Cocaine blocks the normal role of the dopamine transporter (DAT) in terminating dopamine signaling through molecular interactions that are only partially understood. Cocaine analog structure-activity studies have suggested roles for both cationic and aromatic interactions among DAT, dopamine, and cocaine. We hypothesized that phenylalanine residues lying in putative DAT transmembrane (TM) domai...

متن کامل

Dopamine transporter tryptophan mutants highlight candidate dopamine- and cocaine-selective domains.

Cocaine blocks the normal role of the dopamine transporter (DAT) in terminating dopamine signaling and in restricting its spatial spread through molecular interactions that remain largely obscure. Cocaine analog structure-activity studies suggest roles for cationic and hydrophobic interactions between DAT, dopamine, cocaine, and the sodium and chloride ions whose gradients power uptake processe...

متن کامل

Dissociation of high-affinity cocaine analog binding and dopamine uptake inhibition at the dopamine transporter.

Cocaine initiates its euphoric effects by binding to the dopamine transporter (DAT), blocking uptake of synaptic dopamine. It has been hypothesized that the DAT transmembrane aspartic acid residue D79 forms an ionic interaction with charged nitrogen atoms in both dopamine and cocaine. We examined the consequences of novel and previously studied mutations of the D79 residue on DAT uptake of [3H]...

متن کامل

Dopamine transporter mutants with cocaine resistance and normal dopamine uptake provide targets for cocaine antagonism.

Cocaine's blockade of dopamine reuptake by brain dopamine transporters (DAT) is a central feature of current understanding of cocaine reward and addiction. Empirical screening of small-molecule chemical libraries has thus far failed to provide successful cocaine blockers that allow dopamine reuptake in the presence of cocaine and provide cocaine "antagonism". We have approached this problem by ...

متن کامل

Recognition of benztropine by the dopamine transporter (DAT) differs from that of the classical dopamine uptake inhibitors cocaine, methylphenidate, and mazindol as a function of a DAT transmembrane 1 aspartic acid residue.

Binding of cocaine to the dopamine transporter (DAT) protein blocks synaptic dopamine clearance, triggering the psychoactive effects associated with the drug; the discrete drug-protein interactions, however, remain poorly understood. A longstanding postulate holds that cocaine inhibits DAT-mediated dopamine transport via competition with dopamine for formation of an ionic bond with the DAT tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmacology

دوره 63 3  شماره 

صفحات  -

تاریخ انتشار 2003